Energy and lipid metabolism during direct and diapause development in a pierid butterfly.
نویسندگان
چکیده
Diapause is a fundamental component of the life cycle in the majority of insects living in environments characterized by strong seasonality. The present study addresses poorly understood associations and trade-offs between endogenous diapause duration, thermal sensitivity of development, energetic cost of development and cold tolerance. Diapause intensity, metabolic rate trajectories and lipid profiles of directly developing and diapausing animals were studied using pupae and adults of Pieris napi butterflies from a population in which endogenous diapause has been well studied. Endogenous diapause was terminated after 3 months and termination required chilling. Metabolic and post-diapause development rates increased with diapause duration, while the metabolic cost of post-diapause development decreased, indicating that once diapause is terminated, development proceeds at a low rate even at low temperature. Diapausing pupae had larger lipid stores than the directly developing pupae, and lipids constituted the primary energy source during diapause. However, during diapause, lipid stores did not decrease. Thus, despite lipid catabolism meeting the low energy costs of the diapausing pupae, primary lipid store utilization did not occur until the onset of growth and metamorphosis in spring. In line with this finding, diapausing pupae contained low amounts of mitochondria-derived cardiolipins, which suggests a low capacity for fatty acid β-oxidation. While ontogenic development had a large effect on lipid and fatty acid profiles, only small changes in these were seen during diapause. The data therefore indicate that the diapause lipidomic phenotype is developed early, when pupae are still at high temperature, and retained until post-diapause development.
منابع مشابه
Idiosyncratic development of sensory structures in brains of diapausing butterfly pupae: implications for information processing
Diapause is an important escape mechanism from seasonal stress in many insects. A certain minimum amount of time in diapause is generally needed in order for it to terminate. The mechanisms of time-keeping in diapause are poorly understood, but it can be hypothesized that a well-developed neural system is required. However, because neural tissue is metabolically costly to maintain, there might ...
متن کاملDescribing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ)
Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an "omics" approach to describing molecular events during the diapause preparatory phase. We used isoba...
متن کاملEnergy metabolism during diapause in Culex pipiens mosquitoes.
Diapause in overwintering adult female Culex pipiens mosquitoes plays an important role in the transmission of West Nile and other encephalitis-inducing flaviviruses. To investigate the dynamic metabolic processes that control Cx. pipiens diapause, we used radioactive tracer techniques with [(14)C]-glucose to investigate the metabolic fate and flux of glucose in adult mosquitoes reared under di...
متن کاملDynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus.
Reproductive diapause was characterized in females of Pyrrhocoris apterus using physiological parameters (diapause intensity, photoperiodic responsiveness, oxygen consumption, mass and hydration) and changes in relative abundance of mRNA transcripts of eight different genes coding for proteins implemented in energy metabolism, cryoprotectant biosynthesis, biological clocks, and hormonal recepto...
متن کاملGlobal Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae)
The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 19 شماره
صفحات -
تاریخ انتشار 2016